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3 Lecture 1, May 21st

Goals for the Class:

• Learn Fundamental Mathematical Neuroscience

• Learn Code to Solve and Analyze differential equations

• Learn LaTex

Before we start to model the Brain, Let’s review some math.

Many of the equations we will study, must be analyzed/solved using computers.

To Motivate, Recall 2 famous problems from mathematics:

1. Equation Solving

2. Integration

Many equations can be solved by hand symbolically

For example,
3x+ 5 = 6

and

5x2 − 3x+ 10 = 0

The key observation is that we can solve them exactly!

However, we can NOT Solve

5x7 + 3x3 + 6 = 0

By Symbolic means

We can Approximate a Solution or solutions using a calculator, graph or Newton’s Method

Integration is a process defined as a complicated limit:∫ b

a

f(x)dx = lim
n→∞

f(x)
n∑
i=1

f(xi)∆xi
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Fundamental theorem of Calculus

The FTC gives a Symbolic Method for computing Some Integrals

For Example, ∫ 3

1

x2dx =
1

3
x3
∣∣∣3
1

=
1

3
∗ 33 − 1

3
∗ 13

=
27

3
− 1

3

=
26

3

BAD NEWS: The FTC only works if f(x) is continuous and we know the anti-derivative

We knew
d

dx
(
1

3
x3) = x2

This means integrals such as ∫ π

0

sinx

x
dx

We can use other methods to approximate the value:

1. Numerical Integration (Mid-Point Rule, Trapezoidal Rule, Simpson’s Rule)

2. Power Series
sinx

x
≈ 1− x2

3!
+
x4

5!
− x6

7!

The same issue arrives when studying Differential Equations

Some can be solved symbolically; many can’t.

To illustrate How we might proceed.

Consider the equation

dy

dx
= 5y
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with

Initial Condition y(0) = 2

If you don’t see that y = Ae5x is the General Solution

We can Derive it by Separating the Variables:

dy

dx
= 5y

=⇒ dy

y
= 5dx

=⇒
∫

1

y
dy =

∫
5dx

=⇒ ln|y| = 5x+ c⇒ y = e5x+c

or

y = Ae5x

Let’s determine A by using y(0) = 2:

y(0) = Ae0 = A; and y(0) = 2

Thus, by the transitive property,
A = 2

Particular Solution is
y(x) = 2e5x

An alternative method is to solve

dy

dx
= 5y

”Numerically” using Euler’s Method (Oiler).

The idea is to approximate the Solution curve using a Discretized Domain

Recall

dy

dx
= lim

h→0

y(x+ h)− y(x)

h
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If h ≈ 0, then
dy

dx
≈ y(x+ h)− y(x)

h

Let’s plug this into the Eq.
dy

dx
= 5y

y(x+ h)− y(x)

h
x5y(x)

Next solve for y(x+ h):

y(x+ h) ≈ 5y(x) ∗ h+ y(x)

Since y(0) = 2 we can compute y(h) using

y(h) ≈ 5y(0) ∗ h+ y(0)

= 10h+ 2

Let’s use the ”domain”

[0, .05, .1, .15, .2, ..., 2]

We can determine the corresponding outputs using **.

Set h = .05 and x0 = 0

x1 = 0 + h

x2 = x1 + h

.

xi = ih

.

.

xi + 1 = xi + h
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We can compute

y(x1) = 5y(x0)h+ y(x0)

y(x2) = 5y(x1)h+ y(x1)

.

.

y(xi + 1) = 5y(xi)h+ y(xi)

= 5y(xi)(.05) + y(xi)

Let’s make a Chart

xi y(xi)

x0 = 0 y(0) = 2
x1 = .05 y(.05) = 2.5
x2 = .1 y(.1) = 3.125
x3 = .15 y(.15) = 3.90625

End of Lecture I
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4 Lecture 2, May 23rd

Grade
Practice Sets - 10 Points each
4 Projects - 100 Points each

Participation - 25 Points (Class, and Notes)

Today we solve a few more diff eqs. by hand and get back to Euler’s Method.

Practice Set 1

2B.

dy

dt
= y(1 + t2), y(0) = 3

Seperable Eq.

This eq. is seperable, because we can rewrite as

dy

y
= (1 + t2)dt

Next, we Integrate both sides: ∫
1

y
dy =

∫
1 + t2dt

−→ ln|y| = t+
1

3
t3 + c

Next, solve for y:

y(t) = et+
1
3
t3+c

or

y(t) = Aet+
1
3
t3

Note: ec = A

To finish we use the initial condition y(0) = 3 to Determine A.

y(0) = Ae0+0 = A
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and

y(0) = 3

So that A = 3

The Particular Solution is

y(t) = 3et+
1
3
t3

Note: This is an Exact Solution to the Initial Value Problem (IVP).

Practice Set 1 Problem 2(d)

The equation

t
dy

dt
+ 2y = t2 − t+ 1

is NOT Seperable.

However, if we divide through by t we obtain

dy

dt
+

2

t
y = t− 1 +

1

t

All t’s set form

General form of Eq.

Which is of the form

y′ + p(t)y = q(t)

First form linear eq.

Derivative+ Function = Somethingelse

Equations of this form are called

1st Order linear equations

To solve eqs. of this type, we use the so-called
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Integrating Factor.

The Integrating Factor is

I(t) = e
∫
p(t)dt

I(t) = e
∫

2
t
dt

I(t) = e2∗lnt

I(t) = elnt
2

I(t) = t2

(Ignore Constant c)

D maps function to function

D(y) = t ∗ y′ + 2y

D(y) = t2 − t+ 1

D(cy1 + y2) = ... = cD(y1) +D(y2)

Next, Multiply both sides by I(t) = t2:

t2(
dy

dt
+

2

t
y) = t2(t− 1 +

1

t
)

→ t2
dy

dt
+ 2t ∗ y = t3 − t2 + t

Key observation is that the left hand side is a derivative!!

(t2 + y)′ = t3 − t2 + t

To get y we Integrate and obtain

t2y =
1

4
t4 − 1

3
t3 +

1

2
t2 + c

→ y(t) =
1

4
t2 − 1

3
t+

1

2
+ ct−2

End of Lecture II
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5 Lecture 3, May 30th

The 1st two lectures we reviewed some basic 1st order differential equations.

The reason is because one of the most elementary Neuronal models is this type of eq.:

V ′(t) +
1

τ
V (t) = f(t)

V (0) = b

Here, τ (Greek Tau) is a constant.

V(t) represents Voltage Difference

We will Derive this in Detail soon enough.

Stay tuned for what this means in Detail.

Just as we did last week, we can solve this using an Integrating Factor.

Case1 (τ =∞)

eq. reduces to

V ′(t) = f(t)

and thus, By FTC∫ T

0

V ′(t)dt =

∫ T

0

f(t)dt =⇒ V (t)− V (0) =

∫ T

0

f(t)dt

=⇒ V (t) = b+

∫ T

0

f(t)dt

Case2 (τ > 0)

V ′(t) +
1

τ
V (t) = f(t)
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Here, Integrating factor is

e
∫

1
t
dt = e

1
τ
t

Multiply both sides by

e
t
τ to obtain

[V ′(t) +
1

τ
V (t)]e

t
τ = f(t)e

t
τ

Recognize the LHS as a Derivative

[V (t)e
t
τ ]′ = f(t)e

t
τ

Integrate ∫ T

0

[V (t)e
t
τ ]′dt =

∫ T

0

f(t)e
t
τ

=⇒ V (T )e
T
τ − V (0)e0 =

∫ T

0

f(t)e
t
τ dt

=⇒ V (T )e
T
τ − b =

∫ T

0

f(t)e
t
τ dt

Lastly, Solve for V(T)

V (T ) = be
T
τ + e−

T
τ

∫ T

0

f(t)e
t
τ dt

Or

V (t) = be−
T
τ +

∫ T

0

f(t)e
1
τ
(t−T )dt

It is useful to have this formula handy!

Okay, What do all these unknowns represent?
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Well, V (0) = b = VCL

f(t) =
VCL
τ

+
Istim(t)

ACm

Where VCL, τ, ACm are constants determined by experiment

To get an idea what solutions may look like assume we have a simple situation where

VCL = −70, τ = .5, ACm = 1, and

Istim(t) = 0 0 < t < 3

= 1 3 ≤ t ≤ 4

= 0 t > 4

Well,

V (T ) = VCLe
−T
τ +

∫ T

0

f(t)e
(t−T )
τ dt

= −70e−2T +

∫ T

0

[−2 ∗ 70 + Istim(t)]e2(t−T )dt

= −70e−2T +

∫ T

0

−140e2(t−T )dt+

∫ T

0

Istim(t)e2(t−T )dt

= −70e−2T − 140e−2T
∫ T

0

e2tdt+

∫ T

0

Istim(t)e2(t−T )dt

= −70e−2T − 140e−2T (
e2T

2

∣∣∣T
0

) +

∫ T

0

Istim(t)e2(t−T )dt

= −70e−2T − 140e−2T (
e2T

2
− 1

2
) +

∫ T

0

Istim(t)e2(t−T )dt

= −70e−2T − 70e−2T (e2T−1 − 1) +

∫ T

0

Istim(t)e2(t−T )dt
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=⇒ V (t) = −70 +

∫ T

0

Istim(t)e2(t−T )dt

3 Cases to Consider:

Case1 (T ≤ 3)

Here, I(t) = 0 Why?

By definition of I(t)!

V (T ) = −70 to since ∫ T

0

I(t)e2(t−T )d =

∫ T

0

0 ∗ e2(t−T )dt = 0

Why??

Since T ≤ 3, 0 ≤ t ≤ 3

Case2 (3 ≤ T ≤ 4)

Thus, ∫ T

0

I(t)e2(t−T )dt =?

Well,

Sketch

I(t)e2(t−T ) = 0 0 ≤ t ≤ 3

= e2(t−T ) 3 ≤ t ≤ 4

= 0 t > 4

Thus, ∫ T

0

I(t)e2(t−T )dt =

∫ 3

0

I(t)e2(t−T )dt+

∫ T

3

I(t)e2(t−T )db
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=

∫ T

3

e2(t−T )dt = e−2T
∫ T

3

e2Tdt

= e−2T (
1

2
e2t)T

=
e−2T

2
(e2T − e6)

=
1

2
(1− e6−2T )

Thus,

V (T ) = −70 + 1
2
(1− e6−2T ) if 3 ≤ T ≤ 4

Case3 (T > 4)

Here,

V (T ) = −70 +

∫ T

0

I(t)e2(t−T )dt

= −70 +

∫ 3

0

I(t)e2(t−T )dt+

∫ 4

3

I(t)e2(t−T )dt+

∫ T

4

I(t)e2(t−T )dt

= −70 +

∫ 4

3

e2(t−T )dt

= −70 + e−2T (
1

2
e2T )

∣∣∣4
3

= −70 +
e−2T

2
(e8 − e6)

In Conclusion, the solution is

V (T ) = −70 0 ≤ T ≤ 3

= −70 +
1

2
(1− e6−2T ) 3 ≤ T ≤ 4
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= −70 +
e−2t

2
(e8 − e6) T > 4

End of Lecture III

16



6 Lecture 4, June 4th

Last class we studied the IVP(Initial Value Problem)

V ′(t) +
1

t
V (t) = f(t)

V (0) = b

Where b = VCL and

f(t) =
1

t
VCL +

Istim(t)

ACm

The problem is easy if we sent τ →∞

If not, the problem is dependent on

Istim(t)

We then solve the IVP in a specific situation. If we repeated that argument with con-
stant we can determine the precise solution.

For a Square Impulse we can write down the explicit solution.

The characteristic function of a set A is

1A(t) = 0 if t��∈ A

= 1 if t ε A

Suppose (t1, t2) is any Interval. Then,

1(b,t2)(t) = 0 if t��∈ (t1, t2)

= 1 if t ε (t1, t2)

Here’s the idea: A total charge of Q is Given to the cell from t1 = t1 seconds

Until t = t2 seconds.
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Then,

Istim(t) =
Q

t2 − t1
1(t1,t2)(t)

If Q = 3, t1 = 2, and t2 = 8

We have

If 2 < t < 8, Istim(t) = Q
6
∗ 1 if Q = 3, Istim(t) = 1

2

This is called a Square Impulse.

The Precise Solution for V is

V (t) = VCL +
Qτ

(t1, t2)ACm

= 0 if t < t1

= 1− e
(t1−t2)

τ if t1 ≤ t ≤ t2

= e
1
τ
(t2−t) − e 1

τ
(t1−t) if t > t2

Sinusoidal Input

Here, Istim(t) = I0 sin(2πwt)

Where I0 and w are constants.

Well,

V (T ) = VCL +
1

ACm

∫ T

0

e
(t−T )
τ I

(t)
stimdt

= VCL +
I0

ACm

∫ T

0

e
1
τ
(t−T ) sin(2πwt)dt

= VCL +
I0

ACm
e−

T
τ

∫ T

0

e
1
τ
t sin(2πwt)dt

= VCL +
I0
Acm

e−
T
τ

[ e
1
τ t

( 1
τ
)2 + (2πw)2

(
1

τ
sin(2πwt)− 2πw cos(2πw cos(2πwt))

]T
0

18



= VCL+
I0e
−T
τ

ACm( 1
τ2

+ 4π2w2)
∗ [e

T
τ (

1

τ
sin(2πwt)−2πw cos(2πwT ))−e0(1

τ
∗sin(0)−2πw cos(0))]

= VCL +
I0e
−T
τ

ACm( 1
τ2

+ 4π2w2)
∗ [e

T
τ (

1

τ
sin(2πwT )− 2πw cos(2πwT ))− (0− 2πw)]

= VCL +
I0

ACm( 1
τ2

+ 4π2w2)
∗ (BLAH),

BLAH = 2πwe−
T
τ +

sin(2πwT )

τ
− 2πw cos(2πwT )

Yikes!!!

Let’s graph for VCL = −70

I0 = 1, ACm = 2, τ = 1
2
, w = 1

2π
:

V (T ) = −70 +
1

2 ∗ (4 + 1)
[e−2T + 2 sin(T )− cos(T )]

What if I0 = 5 and τ = 1:

V (T ) = −70 +
5

2(1 + 1)
[e−T + sin(T )− cos(T )]

If τ = 5 : −2πw cos(2πwT )

−70 +
5

2( 1
25

+ 1)

[
e−

T
5 +

sin(T )

5
− cos(T )

]

End of Lecture IV
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7 Lecture 5, June 6th

Today we finally show how to write code MATLAB/Octave code.

Before discussing this Let’s discuss proper notation. It is convenient to rewrite our ODEs
(Ordinary Differential Equations) In the form

dy

dt
= F (y, t)

Let’s do this for the problems in Practice Set 1

(a.) dy
dt

= F (y, t) where F (y, t) = yt

(b.) dy
dt

= F (y, t) where F (y, t) = y(1 + t2)

(c.) dy
dt

= G(y) where G(y) = 9.8− .15y

Note: RHS does not depend on time.

(d.) dy
dt

= G(y, t) where G(y, t) = t− 1 + 1
t
− 2

t
y

(e.) dv
dt

= H(v, t) where H(v, t) = −1400 + te−t − 1
.05
v

Using this form of the ODE we can easily use Discrete times to compute an approximated
solution

To be more specific:

Instead of solving

dy

dt
= F (y, t)

For all t in same interval

We will solve for

t1, t2, t3, t4, ..., tn and obtain

y(t1), y(t2), ..., y(tn)

We use the definition of the derivative and note

dy

dt
≈ y(ti+1)− y(ti)

ti+1 − ti
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So that if ∆t = ti + 1− ti we have

y(ti+1)− y(ti)

∆t
≈ F (y(ti), ti)

We can rewrite as

y(ti+1)− y(ti) + ∆tF (y, t)

So, if we know y(t1) then we can readily compute y(t2), y(t3), ...

This is called the Forward Euler Method.

This is too tedious to do by hand so we have the computer do the work.

Some MatLab Basics

1. Matlab likes to store ”things” as vectors. For example, we can let

t = (t1, t2, t3, ..., tn)

and

y = (y(t1), y(t2), ..., y(tn))

2. If we have 2 vectors t and y we can graph them with

Plot(t, y)

F = inline(′t− 1 + (1./t)− 2./t).′y′,′ y′,′ t′);

N = 500

dt = .001

t = Zeros(1, N);

y = Zeros(1, N);
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t(1) = 1;

y(1) = .5;

for i = 1;N − 1;

y(i+ 1) = y(i) + dt ∗ f(y(i), t(i));

t(i+ 1) = t(i) + dt;

end

t1 = 0.1 : 0.1 : t(N)

yexact

Seperable Equation

dy

dt
= yt <==>

dy

y
= tdt

<==> lny =
1

2
t2 + d

==> y = Ae
1
2
t2

y(0) = A = 1 ==> A = 1

End of Lecture V
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8 Lecture 6-10, June 11th-June 20th

These lectures we worked on MatLab/Octave
Code, and also worked on Overleaf LaTex dur-
ing class time.
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9 Lecture 11, June 25th

Summarize Course

• Review of ODEs (Seperable, and 1st Order linear)

• Stated and Solved Basic Neuron Model

• Introduced LaTex

Today we will discuss elements from linear algebra used in Programming

Then we Discuss Programming in MatLab lecture.

Recall that A matrix (m ∗ n) Bm∗n is an array of numbers written as

B =


b11 b12 .... b1n
b21 b22 .... b2n
. .
. .
. .
bm1 bm2 .... bmn



Basic Examples

B =

(
1 5
3
2

6

)
2x2

A =

(
5 6 10.3 5
4 −3 .5 6

)
2x4

1 ∗ n matrix is often called a Row Vector.

A m ∗ 1 matrix is often called a Column Vector.

Examples(
1 6 7 8

)
is a row vector.3

5
6

 is a column vector.
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Given 2 Matrices of the same dimension we can define addition and subtraction.

Am∗n =


a11 a12 .... a1n
. .
. .
. .
am1 am2 .... amn



Bm∗n


b11 b12 .... b1n
. .
. .
. .
bm1 bm2 .... bmn



C = A+B =


a11 + b11 a12 + b12 .... a1n + b1n

.

.

.
am1 + bm1 .... .... amn + bmn



Example(
4 5 6
−2 3 25

)
+

(
10 −5 12
−1 15 −6

)
=

(
14 0 18
−3 18 19

)

Subtraction is Defined in obvious way.

Multiplication is much more complicated

Start with 2 Vectors

x =
(
x1 x2 x3 .... xn

)
y =

(
y1 y2 y3 .... yn

)
We define the Scalar or Dot Product to be

x ∗ y = x1y1 + x2y2 + ....+ xnyn =
∑̂
i=1

xiyi
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Example

x =
(
1 −3 10

)
y =

(
6 4 −2

)

x ∗ y = 1 ∗ 6 + (−3) ∗ 4 + 10(−2)

= 6− 12− 20

= −26

Note: The dot product of two vectors is a real number

There are other useful ways to define multiplication of vectors, but they’re not useful to
this class.

The norm of a vector is denoted by

||x|| =
√
x ∗ x =

√
x21 + x22 + ....+ x2n

This is just a generalization of the distance formula AKA the Pythagorean Theorem.

To see this think about the ”vector”(x1x2x3) as a point in 3D Space.

Think about x = (x1x2) as a ”Point” in the plane!

Rest of the day practiced MatLab

Addition Notes from MatLab Lecture

Practice Set 2

1. Learn how to Plot on Octave/MatLab

2. Then do numeric Integration.

3. Then Euler Method
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MidPoint
[x1, x1], [x1, x2], ....[xi−1, xi]

mi =
xi−1 + xi

2

m =
(
m1 m2 .... mn

)
=
(
m(1) m(2) .... m(n)

)

m(1) =
1

8

m(2) =
3

8

m(3) =
5

8

m(y) =
7

8

m(1) =
0 + 1

4

2

m(2) =
1
4

+ 2
4

2

Recall: Left Sum
n−1∑
i=0

f(xi)∆x

= ∆x[f(x0) + f(x1) + ....+ f(xn−1)]

Right Sum
n∑
i=1

f(xi)∆x

= ∆x[f(x1) + ....+ f(xn)]

End of Lecture XI
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10 Lecture 12, June 27th

Recall that artain ”neuron” experiments suggest that the ”voltage” of a given neuron ex-
hibits the following behavior

Spike Train Version, but still stochastic and more realistic.

For ”Low” constant current the experiment shows

Our job is to develop and study mathematical models (Differential eqs.) that ”describe”
the experiements.

Early this term we stated a model called the passive cell model:

dv

dt
= −1

τ
V +

VCL
τ

+
I(t)

A ∗ Cm

Where τ , VCL, A, and Cm are constants.

We solve this by hand for specific currents I(t).

If we apply a Constant Current over a time interval [t1 t2]

28



We obtain

t1 is at the start point of 0 right before the current spike. t2 is at around 7 where it
starts to die off, and meets back to where it rests.

Using Octave/MatLab we can experiment with all types of current input.

Before discussing a more realistic model, let’s dig deeper into the Passive Model.

I(i) = (t(i) > 2) ∗ (t(i) < 22) ∗ 1e− 5

Our next goal is to study system of ODEs.

Recall the idea for one equation.

dy

dt
= F (v, t)

We use

dv

dt
≈ V (ti+1)− V (ti)

∆V

To Write

V (ti+1 ≈ V (ti) + ∆tF (V (ti), ti)

A more precuse formulation says to use MVT Theorem:

V (ti+1)− V (ti) = V ′(Ci)∆t

Where

Ci ε (ti, t− i+ 1)
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Thus, if ∆τ ≈ 0, Ci ≈ ti, and we have

V (ti+1 = V (ti) + V ′(ti)∆t

V (ti+1 = V (ti) + F (V (ti), ti)∆t

What about a system of equations?
Say

dV1
dt

= F1(V1, t)

dV2
dt

= F2(V2, t)

Applying Eulers Method to both we have

V1(ti+1 = V1(ti) + ∆tF1(V1(ti), ti)

V2(ti+1 = V2(ti) + ∆tF2(V2(ti), ti)

Key observation:

What if both equations depend on each other?

End of Lecture XII
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11 Lecture 13, July 2nd

Recall that our Current goal is to study the famous

Hodgkin-Huxley Neuron Model

This model is a System of Differential Equations.

A first order system is any system of the form

dx1
dt

= F1(t, x1, x2, ..., xn)

dx2
dt

= F2(t, x1, x2, ..., xn)

Example:

dx1
dt

= 3x1 + 5t

dx2
dt

= 5x1x2

Here,

F1 = 3x1 + 5t

F2 = 5x1x2

In Vector Notation we just write

d~x

dt
= F (t, ~x)

Where

~x = (x1, x2, ..., xn)

~F = (F1, F2, ..., Fn)
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An analytical study of systems is done in a Differential Equations course.

In this class, we will study them numerically

Cool Fact

A 2nd order Differential Equation.

Can be written as a system of 2 1st order Equations. This is useful, because we can use
Euler’s Method to solve numerically.

Ex.

x” = −x Can be solved using techniques learned in Calc II and Differential Equations
courses.

The general solution is x(t) = A cos t+B sin t

The particular solution satisfying x(0) = 1 and x′(0) = 0 is x(t) = cos t

To solve this numerically we rewrite x” = −x as a system.

To do this we just set x1 = x and x′2 = x”

So that the system is

x′1 = x2

x′2 = −x1

Using the code System-test.m

We can solve

x” = −x
x(0) = 1 x′(0) = 0

and we set Cosine as expected.

We also have the Lorenz.m Code for using Euler to solve a system of 3 equations.

We should be able to modify this code to solve the HH Model.

End of Lecture XIII

32



12 Lecture 14, July 9th∫ b

a

f(x)dx ≈
N∑
i=1

f(mi)∆x

mi =
xi−1 + xi

2

mi ε [xi−1, xi]

=
b− a
N

[f(m1) + f(m2) + ...+ f(mN)]

If a=-10, b=10:

x0 = −10 x = −10 : .1 : 10 Subinterval = .25
x1 = −9.75 y = x.2 xlength : x(201)− x(1)

steps = xlength ∗ ( 1
subint

)

∆x or dx = xlength
steps

m1 =
−10 +−9.75

2

mid =
x(1) + x(2)

2

for i = 1 : steps

mid = mid+ .25

midpoint-test.m

a = −10;

b = 10;

N = 20; //Number of Rectangles

x = a : .1 : b;
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dx = b−a
N

; //Step Size.

x = Zeros(N + 1, 1) //Storage for x0, x1, x2, ..., xN

x(1) = a; x(2) = a+ dx

m = Zeros(N, 1); //Storage for midpoints

m(1) = x(2)+x(1)
2

for i = 1 : N
. x(i+ 1) = x(i) + dx;

. m(i+ 1) = x(i)+x(i+1)
2

;
end

F = m. ∗ uparrow ∗ 2; //evals midpoints y = x2

Int = ∆x ∗ sum(f)

ff = x.2

xi = a+ idx Left= ∆x[Sum(ff)− ff(x(N))] Right= ∆x[Sum(ff)− ff(x(1))]

FTC y′(x) = F (y, x)

y(b)− y(a) =

∫ b

a

y′(t)dt

If, a = x, b = x+ h

y(x+ h)− y(x) =

∫ x+h

x

y′(t)dt

≈ y′(x∗) ∗ h

y′(x) = F (y, x)

∫ b

a

y′(x)dx =

∫ b

a

F (b, x)dx
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y(b)− y(a) =

∫ b

a

F (y, x)dx

y(b) = y(a) +

∫ b

a

F (y, x)dx

Suppose limit limn→∞ xn = L:

L = rL(1− L)

L = rL− rL2

0 = rL− L− rL2

0 = (r − 1)L− rL2

L =
−b±

√
b2 − 4ac

2a

=
−(r − 1)±

√
(r − 1)2 − 4(−r) ∗ 0

2 ∗ (−r)

=
−(r − 1)± r − 1

−2r

=
−2(r − 1)

−2r

=
r − 1

r

r = 2.5
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L =
2.5− 1

2.5
= .6

On computer you can put

N = 10
r = .2
x(1) = .5

for i = 1 : N
. x(i+ 1) = x(i)
end

ans=x’

x(2) = x(1) ∗ (.2)(1− x(1))

= .5(.2)(.5) = .05

x(3) = .05(.2)(1− .05) = .0095

x(4) = .00188

x(5) = .000375

End of Lecture XIV
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13 Lecture 15, July 11th

dy

dt
= F (y, t)

yt+1 = yt + ∆t ∗ F (yt, t)

dy

dt
= ty

∫
1

y
dy =

∫
tdt

lny =
1

2
t2 + C

y = Ae
1
2
t2

Goal: Write own Euler scheme to solve.

dx

dt
= σ(y − x)

In Euler below

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

x(i+ 1) = x(i) + dt[σ(y(i)− x(i))]

y(i+ 1) = y(i) + dt[x(i)(ρ− z(i))− y(i)]
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z(i+ 1) = z(i) + dt[x(i)y(i)− βz(i)]

t(i+ 1) = t(i) + dt

Solving Hodgkin-Huxley by Euler Scheme

y =


y(1)
y(2)
y(3)
y(4)



y′ = F (y, t)


y′1
y′2
y′3
y′4

 =

 .
UglyStuff

.



~y′ = F (~y, t)

~y(i+ 1) = ~y(i) + dt ∗ F (~y(i), t(i))


y1(i+ 1)
y2(i+ 1)
y3(i+ 1)
y4(i+ 1)

 =


y1(i)
y2(i)
y3(i)
y4(i)

+ dt


F1(y1(i), t(i))
F2(y2(i), t(i))

.

.



m =


y1(t1) y2(t1) y3(t1) y4(t1)
y1(t2) y2(t2) ... ...
. . . .
. . . .


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m =


y(1, 1) y(2, 1) y(3, 1) y(4, 1)
y(1, 2) y(2, 2) y(3, 2) y(4, 2)
. . . .
. . . .



End of Lecture XV
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14 Lecture 17, July 16th

Last class we solved the HH using a Euler Scheme. We feel good about it, because our
picture is similar to pics from other code.

In general, the HH model is Difficult to Analyze.

Today we Introduce some ideas used to Analyze nonlinear equations and systems.

Recall: It is rare to be able to solve nonlinear equations and systems in closed form by
hand.

This means it is rare to determine

A formula for the exact solution.

We do the next best thing:

Develop a theory so that we are confident our computed approximate solution is valid.

Strategy

Consider

x′(t) = F (t, x)

and study F.

If it has certain properties then the IVP has a unique solution. By fancy Fix Point Theorem.

Thus, we can study properties of the solution analytically and use them to validate nu-
merically compute solutions.

To illustrate these ideas

Let’s consider //another space to x′(t)

x′(t) = x(x− 1) <==>
dx

dt
= x(x− 1)

We can solve by separating variables.

But let’s ignore that for the time being.

Instead, let’s analyze the equation by 1st determining any Steady State Solutions
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These are solutions x(t) satisfying

x′(t) =
dx

dt
= 0

For this equation

x′(t) = 0

<=> x(x− 1) = 0

So that x(t) = 0 and x(t) = 1 are 2 Steady State Solutions.

Let’s solve the equation precisely:

dx

x(x− 1)
= dt <=>

∫
A

x
+

B

x− 1
dx =

∫
dt <=>

∫
1

x
+

1

x− 1
dx = t+ C

−ln(x) + ln(x− 1) = t+ C

ln(
x− 1

x
) = t+ C <=>

x− 1

x
= Aet <=>

x− 1 = Aetx <=>

x− Aetx = 1
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x =
1

1− Aet

Let’s compute sol. satisfying x(0) = 1
2

x(0) =
1

1− A
<=>

1

2
=

1

1− A

<=> 1− A = 2

<=> −A = 1

Thus,

x(t) =
1

1 + et

Let’s Graph It!

Note: The solution is contained between the steady states

Let’s plot some more

42



Say the solution passing through (0, 2).

x(0) = 2 =
1

1− Ae0
<=>

2 =
1

1− A
<=>

(1− A)2 = 1 <=>

2− 2A = 1 <=>

−2A = −1 <=>

A =
1

2

x(t) =
1

1− 1
2
et
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Note: The solution never crosses the steady states.

What about in a System?

Consider

x′1 = F1(t, x1, x2)

x′2 = F2(t, x1, x2)

and note the equilibrium sols satisfy
0 = F1 and 0 = F2.

Suppose F1 and F2 do not depend on t explicitly:

F1 = F1(x1, x2) + F2(x1, x2)

.
We can use Taylor’s Theorem to linearize about the equilibrium solutions x̄1 and x̄2

For simplicity, assume x̄1 = x̄2 = 0
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Then Taylor’s Theorem says

F1(x1, x2) ≈ F1(0, 0) + F1x1(x1, x2) ∗ x1 + F1x2(x1, x2) ∗ x2

F (x, y) = x2 + y2 + xy

Fx(x, y) = 2x+ 0 + y

Fy(x, y) = 0 + 2y + x

Example

dx

dt
= 6x− 2x2 − xy

dy

dt
= 4y − xy − y2

This is a Non linear System.

Let’s compute equilibrium pts.

Clearly (x, y) = (0, 0) is one.

To find other solutions
set x = 0

0 = 0 ∗ (6− y)

0 = y(4− y)

=> y = 0 or y = 4

Thus, (0, 4) is also an equilibrium sol.

Similiarly, y = 0 gives (3, 0).
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To use Taylors Theorem

Set

F1 = 6x− 2x2 − xy

F2 = 4y − xy − y2

and we differentiate:

F1x = 6− 4x− y

F1y = −x

F2x = −y

F2y = 4− x− 2y

Now evaluate at (0, 0)

F1x(0, 0) = 6 F2x(0, 0) = 0

F1y(0, 0) = 0 F2y(0, 0) = 4

Thus,

F1(x, y) ≈ F1(0, 0) + F1x(0, 0) ∗ x+ F1y(0, 0) ∗ y

F2(x, y) ≈ F2(0, 0) + F2x(0, 0) ∗ x+ F2y(0, 0) ∗ y

=> F1(x, y) ≈ 6x

F2(x, y) ≈ 4y
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Our ”linearized” system is

dx

dt
= 6x

dy

dt
= 4y

Other ways to analyze are:

1. Phase Portraits

2. Slope Field //It can solve non linear equations

3. Study Asymptotics of equilibrium

4. and more

End of Lecture XVII
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15 Lecture 19, July 18th

To motivate just imagine that in real life the voltage would more resemble

Than
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The difference is that we expect the voltage to ”hover” around its resting value as op-
posed to being the exact value all the time.

In mathematical terms we expect the voltage to be stochastic as opposed to determinis-
tic.

One method to modeling this Feature is to use a Stochastic Differential Equation

Perhaps the most ”basic” model is the Linear Integrate and Fire Model which we denote
as IF.

dv

dt
= µ(t) + σ(t) ∗ dw

dt

dw
dt

is the ”random” or ”Stochastic” term

The meaning of dw
dt

is well beyond the scope of this course.

If you’re interested read up on a Wiener Process and Brownian Motion

A standard way of Analyzing a Stochastic Differential Equation is to use a Fokker Planck Equation
which we will denote as FPE

This turns the question from

”What is the voltage at time t” to ”What is the probability the voltage = blah at time
t?”

In a special case we can Analyze the FPE by looking for a certain type of solution.
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In doing this we arrive at a very useful algebraic equation:

∂ez = ∂ cosh(∂) + z sinh(∂)

Where

z =
µθ

σ2
> 0

and

∂ = ∂1 + i∂2

=
θ

σ2

√
µ2 + 2λσ2

The Important numbers for solving the FPE are the values λ. They’re called eigenvalues.
In order to determine λ

We must solve ?.

It is possible that ∂ and hence λ are Complex Numbers.

Recall

x2 + 1 = 0

x2 = −1

x2 = ±
√
−1

±i

Theorem ? has infinitely many solutions and hence we can solve the FPE.

The proof is difficult, but today we will show how it can be done. The idea is common
in Applied Mathematics

Solve an Algebraic Equation by turning it into Differential Equation(s) and Relying on
Theory(Implicit Function Theorem).

Some equations are explicit and it’s clear that there solutions.
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For example,

y = 3x+ 1

Has infinitely many solutions. They can be represented by a line in the plane.

The equation x2 + y2 = 4 has Infinitely many solutions. They can be represented in the
plane by a circle of Radius 2 centered at the origin.
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However, if I just write

x2y − 5 sin y + 4xy3 = 0

It is unclear if there are any solutions.

A little guessing and checking shows (A,0) is a solution for any value of A.

Are there anymore??

So, if we plug the equation into Desmos it gives us a ”crazy” graph. Is it correct?

One idea is to see if we can solve y in terms of x or x in terms of y.

Suppose we can solve y = y(x)

using Implicit Diff(Chain Rule) we might say
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2xy + x2 ∗ y′ − 5 cos y ∗ y′ + 4 ∗ y3 + 12y2 ∗ y′ = 0

=> y′ =
−2xy − 4y3

x2 − 5 cos y + 12y2

Note: (0,−π) is also a solution.

This means we graph y(x) by solving the IVP{
y′ = −2xy−4y3

x2−5 cos y+12y2

y(0) = −π

This example is extremely challenging:

Who is correct: Desmos? Octave? Neither?

To illustrate with a simpler example consider

x2 + y2 = 4 which gives ODE

2x+ 2y ∗ y′ = 0

<=> y′ =
−x
y

Moral: many complicated Algebraic equations can be ”solved” numerically using a com-
puter. However, we must have theoretical tools to validate our computations.

End of Lecture XIX

End of Intro to Mathematical Neuroscience
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